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Shock wave propagation conditions in an elastic medium with a M~naghan 

potential [l] are investigated. The velocities of the possible shock waves are 

found from the solution of the system of equations in jumps on the shocks. Neces- 
sary conditions for the existence of shocks, analogous to the Zemplen theorem 

for a perfect gas, are obtained by using the second law of thermodynamics on the 
surface of discontinuity. 

The propagation of weak waves of discontinuities in an elastic medium under 
finite strains has been investigated in @] et al. The elastic medium was consid- 

ered in~mpressible in [3]. Shock waves pro~gation has been studied for a com- 

pressible elastic medium in [4 - 61, etc. The governing equations were written 
as a generalized Hooke’s law in [4]; expressions were obtained for the shock 
velocities as was the existence condition for a quasi-transverse shock. The shocks 
were studied for the particular cases of deformation of the medium ahead of the 

shock [5,6]. 

1, Let us define an elastic medium by the M~naghan potential 

w --= o.i,s + cf,, -+ Mrl, -f- ml, + 7211~ 0.1) 

II = Ckkt I, =- e7tic17t;, I3 =- Ciki?kjC?ji 

Ci; ---’ I/, (lAi,j + ZLj, i - Zlk, iUk, j) 

Here Cij is the Almansi finite strain tensor, I,, 12, 1s are the invariants of this ten- 

sor, and ui are the displacement vector components in a Cartesian coordinate system. 
The coefficients a and o are expressed linearly in terms of the Lame parameters, and 
the coefficients I, m, n are the ordinary Murnaghan coefficients or third-order elastic 

moduli. The applicabiiity of (1.1) for a broad class of materials is shown in p, 81, where 
these coefficients have been determined experimentally. 

The following constraints on the coefficients n, c, I, m, n in (1.1) result from the 
condition of nonnegativity of the function W : 

a > 0, c > 0, sign 1 :iign n = sign I, (1.2) 

sign 111 sign 1, 

is satisfied in the case of the plane state of strain. The expression in parentheses is non- 

negative, hence 
sign I, = sign I, = sign m (1.3) 
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Let us calculate the Euler strain tensor oii from the following formula [S]: 

Sij = $ ck- (S&j - ekj) (1.4) 

J- = 
PO i 

I - 211-t 21,” - 2Iz - f I13 + 41x1‘2 - $ qs 

The relative density p / pa is expressed in terms of the Almansi tensor invariants [l]. 

Substitutung (1.1) into (1.4) results in the governing equation 

(sij = 2 Cle,,dij + 2 ceii + (3 n - 2 a) l.li,k 6ij + lV,kVksSij + (1.5) 

2 (1 - 2 a - c) ak,kvij + (3 m - ‘?i c) Uikvkj 

vij = ‘!2 (Ui,j + U.j,i) 

Let a surface of discontinuity 2 move at some velocity G. in the medium under con- 

sideration. Let us introduce a moving system of coordinates coupled to I: , let us direct 
the za axis normal to the line of discontinuity. Let the fixed coordinate system have 
axes parallel to the moving axes at some time, then the transformation formulas are 

Here 6 / 6t is the delta derivative with respect to time [9]. The displa~ments on x 

are continuous, hence 

The square brackets denote jumps in the corresponding quantities. The displacement 
velocities in the moving coordinate system are calculated from the formula 

Ui = 6Ui I6t + (VZ - G) Ui, 2 $ V~UI, I (1.7) 

performing the jump operation in (1.7) and taking account of (1.6), we obtain 

JuiJ = %I, r Iv~J + /(US - G) ai, 21 0.8) 

Let us examine the particular case when the displacement vector components ahead 

of the shock are independent of x1, then from the expression for eij in (1. l), (1.5) and 
(1; 6) we obtain expressions for the jumps in the strain and stress tensors for the case of 
the plane state of strain 

f%J = flk [=A, Blr [%s~ = f%k fUk, 21 fl.9) 

fll = (c - A, (U& - I%, ,I)), f1z = - w?2 

f21 = --h, chit‘2 - [%A fzz = h - h, Gwi? -- [%,zl) 
ho = 2 (a + 4, h, = 2a + 3c - 1 - 31, m 

h, = 7 (a -j- c) - 3 (2 + m + n), h, = II4 (4a + 8c -- 21 - 3m) 

Solving (1.8) for [vi J, we obtain 

Jv,J = (Q- - G)(lu,, *i + a;,~ 1% 21 1 (1 - dt)) (1.10) 

[?$I = (vuz- - Gl I=,, z I I (1 - u&J 

Let US append the dynamical comatibility conditions for the discontinuities on theshock 

to (1.9),(1.10) 
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[%I = P- (us- - G) [ul] (1.11) 

[%I = P- (~a- - G) [vzl, [P (3 - G)l = 0 

Equations (1.9) - (1.11) form a closed system in the jumps of the discontinuous quanti- 
ties. Eliminating the jump in the stress and strain tensor components therefrom, we 

arrive at the following: 

T/’ Un1, 21 + r& [G, 21 / (1, - u<z>} = flk hk, 21 (1.12) 

Vb,, 2J = (1 - u&d fik hk, zJ, V = p- (us- - G)z 

Let us consider V an unknown quantity characterizing the velocity of shock wave pro- 

pagation. Eliminating [u,, s J from (X.12), we obtain a cubic equation in V 

AT---Birz -cv+D=o (1.13) 

Because of unwieldiness we do not present expressions of the coefficients A, B, c, D 
in terms of the quantities in (1.12). If the discriminant of the cubic equation (1.13) is 
positive, then it has three real roots. Since V > 0, then the number of positive roots 
governs the number of possible shocks. 

2, Let us use the small parameter method to investigate the roots of (1.13) by can- 
sidering n;tz a small quantity. Neglecting squares of this quantity in (1.13), we obtain 

A,V3 + B,T12 + CijV + Do = 0 (2.1) 

A, = 1 - u&, B, = Ao2fiz + 2 Aofa 
C, = A,fn2 + 2A02fsfm D, = Ao2fdn2 

which can be reduced to 

Substituting V = V,’ and V = V,” into (1.12) in the same approximation results in 

the respective equalities 

[Ut, J = 0, L21 = (fzz + fll Ail) [%wzl (2.3) 

Hence, it is seen that the first approximation in the case considered yields the same 
results as the linear theory : two shocks, a longitudinal and a transverse, are possible. 

The nonlinearity is felt only quantitatively in the values for the propagation velocities 
for these shocks. 

I.et us turn to finding the second approximation for the roots of (1.13), which we shall 
represent as the sum of the first approximation and of a small additional term 

V, = V,o + Vii, V, = V,” + vat (2.4) 

Su~tituting (2.4) into (1.13)‘ we obtain the following values for VI and V2 to higher 

order accuracy 

V, = Vi0 - h3(V10+ ““‘) (2A,, (V,” - V;) + V1” + h.Ao [u~,~]) u~,~’ (2.5) 
A,) (Vl” - V‘z”) 
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Let us call the shock corresponding to the root V, quasi-longitudinal, and to the roots 
V a,3 quasi-transverse. The existence of quasi-transverse waves is possible if the discri- 
minant in the cubic equation (1.13) is positive resulting in the inequality 

h, I%, 21 < 0 (2.6) 

For known elastic materials, the coefficients I, m, n are small compared to the 
coefficients a and c, i.e. h, > 0, hence, from (2.6) we obtain the inequality 

[%21 6 0 (2.7) 

Let us note that the inequality (2.6) is valid for any 1, m, n for I1 < 0 according to 

(1.2) and (1.3). The inequality (2.7) was first obtained in [4] for a quasi-Hooke model 

of an elastic medium, 

3, The thermodynamic condition of compatibility of the discontinuities, which is a 
corollary of the second law of thermodynamics, should be satisfied on the shock. Let US 
write this condition as [lo] 

+ A [SS] + Ai [Vi] - $ [W] > 0 

A=p-(us--G), Ai=o+--AvI+ 

In this case the inequality (3.1) becomes the following: 

(3.1) 

- -& p- (u2-- G) [ u# - + P- (~2 - G) [uz12 + (3.2) 

Wsing (l.l), the jump in the elastic potential can be represented as 

IFVl = al(e,, + e2.J21 + (I + 312 ml [Cell + e22> eikekif + 
e ieiRe&iJ + (a - II2 4 Nell + ed3J 

(3.3) 

From (1.8) we find the values of the stress tensor components ois” and 02a+ 

012 + = cu;2 - hlL4, ui2, + 022 = h,u;,, - n2q22 - Q::2 (3.4) 

Let US examine the inequality (3.2) in the case of a quasi-longitudinal shock. Substitu- 

ting (3.3), (3.4). (1.14) and the first equality from (2.4) into (3.2) and limiting ourselves 
to the cubes of the tensor components of the displacement gradient, we obtain the ine- 
quality 

(a + c + 1 + m + n) tu,, 21 > 0 
For the case when the coefficients I, m and n are small compared to the coefficients 

a and c, the inequality (3.5) takes the simple form 

[%2J A 0 (3.6) 

It follows from (3.6) that quasi-longitudinal rarefaction shocks are impossiblw in elastic 
media. In the case of a quasi-transverse shock, the left side of inequality (3.2) is iden- 
tically zero, to the accuracy of cubes in zzij , 

Therefore, if energy dissipation by a quasi-longitudinal shock is of third order in the 
tensor components rL i, j , then energy dissipation by a quasi-transverse wave is higher 
than third order in the case under consideration. 
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By the method of Fourier integral transforms we construct the exact solution of 
the problem of equilibrium of a nonhomogeneo~ half-plane z >, 0 under the 
action of normal and tangential forces applied to the boundary. The shear mo- 
dulus of the half-plane is a power function of a linear binomial in the Cartesian 
coordinate z while Poisson ratio is constant. 

In the papers [l - 41, devoted to similar problems, the equilibrium of a half- 
plane and a half-space z > 0 with modulus of elasticity h’ (3) = E& , was in- 
vestigated. It is obvious that such media are physically not real, since the mo- 
dulus of elasticity is equal to zero on the surface. This circumstance, in parti- 
cular, implies a restriction on the possible values of the exponent k. Thus, for 

example, the formulation of the problem on the action of a distributed load has 
sense only for 0 -2; k < 1, which in turn, restricts considerably the sphere of ap- 
plicability of the power law adapted by the authors as an interpolation formula 


